
File: DISTL2 320101 . By:AK . Date:02:07:98 . Time:13:17 LOP8M. V8.B. Page 01:01
Codes: 3948 Signs: 2267 . Length: 50 pic 3 pts, 212 mm

Journal of Approximation Theory � AT3201

Journal of Approximation Theory 94, 203�221 (1998)

Proximal Mappings

Jean-Paul Penot

Laboratoire de Mathe� matiques Applique� es, URA 1204 CNRS,
Universite� de Pau et des Pays de l 'Adour,

Av. de l 'Universite� , 64000 Pau, France

Communicated by Aldric L. Brown

Received June 11, 1996; accepted in revised form August 18, 1997

We study differentiability properties and subdifferentiability properties of the
Baire approximate and of the Moreau�Yosida approximate of a nonconvex func-
tion on a Banach space. These properties are intimately linked with exactness of the
infimal convolution defining the approximation. When applied to indicator func-
tions of possibly nonconvex subsets, our results yield existence of best approxima-
tions under subdifferentiability assumptions on the distance function and suitable
smoothness assumptions on the space. � 1998 Academic Press

Two kinds of approximations of functions are widely used. The first one
is the integral convolution by mollifiers. It is particularly used in the study
of partial differential equations. The second one is the infimal convolution
method of Baire and Moreau and Yosida (see [1, 26]). It is not limited to
the finite dimensional case. It is usually used for convex functions, but as
shown in [13] and some of its references, its domain of application can be
extended beyond this case (see also [2]).

It has been shown in these two references that a key assumption on the
function f to be regularized is its growth property. For this reason, it is
advisable to consider a regularization using a general kernel as in [13].
In such a way, a kernel adapted to the growth of the function can be
chosen. Here, for f : X � Rv :=R _ [�], lower semicontinuous (l.s.c.) on
the Banach space X, and r>0, we set

fr(w) := inf
x # X

( f (x)+r&1k(w&x)),

where k=h b j, with j(x)=&x&, h : R+ � R of class C1, nonnegative and
nondecreasing on P :=(0, �) and such that h(0)=0, h(t) � � when
t � �. The usual cases are h(r)=r (Baire regularization), h(r)=(1�2) r2

(Moreau�Yosida regularization), and more generally h=hp with hp(r)=
(1�p) r p for p�1 and h=he with he(r)=exp r&1. Combinations of these
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cases can also be considered; for instance one can take h(r) :=br p for r # [0, a],
h(r) :=crq+d for r>a, with appropriate positive numbers a, b, c, d.

The proximal (or prox) multimapping associated with f is given by

P f
r(w) :=[x # X : f (x)+r&1k(w&x)= fr(w)]=Prf

1 (w).

When f is the indicator function iC of a closed subset C of X (given by
iC(x)=0 for x # C, iC(x)=� for x # X"C), one has fr(w)=r&1h(dC(w))
where dC(w)=infx # C d(w, x) and P f

r(w) is nothing but the set of best
approximations PC(w) of w in C. In such a case the multimapping has been
widely studied and used. In general it is a multimapping (or corre-
spondence) which also has a considerable interest. In particular it is an
essential tool for the study of the proximal algorithm (see [23] for a recent
account and references).

Conditions ensuring that the values of P f
r( } ) are at most singletons are

easy to find. As in [24] we are especially interested in conditions ensuring
it has nonempty values. In the special case just mentioned, that means we
are looking for conditions ensuring existence of best approximations. We
show that subdifferentiability in the Fre� chet sense of fr is such a condition
in a natural class of Banach spaces including the Hilbert space (Section 3).
We also consider the case of Hadamard (or contingent) subdifferentiability.
Our results generalize previous results of [11, 21, 27] related to the case
of distance functions instead of general regularized functions and of usual
differentiability instead of subdifferentiability as here. While preparing the
list of references of the present paper we became aware of the paper [16]
in which related results are proved in a Hilbert space framework for the
distance function and with different subdifferentiability notions (see also
the thesis [34] prepared under the guidance of the author).

Let us observe that since fr is devised in order to regularize f, differen-
tiability or subdifferentiability assumptions on it are quite natural; on the
other hand, the knowledge of derivatives or subderivatives of fr requires an
a priori study of the proximal multimapping P f

r( } ). We also observe that
our object of study bears some similarity with the process known as
Tychonov regularization; this fact is reflected by our use of the notion of
radius of essential minimization of a function. In the case of the indicator
function of a subset, this notion could not be distinguished, as the distance
to the set is part of the picture in such a case.

1. PRELIMINARIES

Proximal multimappings and distance functions have properties which
deserve interest, even in the nonconvex case. Using convex analysis techniques
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Moreau [26, Proposition 7d] has shown that the proximal mapping
associated to any function f is monotone. On the other hand, E. Asplund
[4, 5] has proved that if C is a closed subset of a Hilbert space X then
1
2d 2

C& 1
2 & }&2 is a concave function and that the projection mapping is

monotone. Synthesizing both works, let us note here that the proximal
multimapping associated to any (nonconvex) function f is monotone when
the kernel is the Moreau�Yosida kernel.

Lemma 1.1. The Moreau�Yosida proximal multimapping P f
r associated

with any function f : X � Rv on a Hilbert space X is a monotone relation.

Proof. Let x # P f
r(w), x$ # P f

r(w$) with w, w$ # X. By definition we have

f (x)+
1
2r

&w&x&2�f (x$)+
1
2r

&w&x$&2

f (x$)+
1
2r

&w$&x$&2�f (x)+
1
2r

&w$&x&2

hence, by addition, f (x) and f (x$) being finite (unless f #+�),

&w&x&2&&w$&x&2�&w&x$&2&&w$&x$&2

or

0�(w&w$ | x&x$). K

It would be interesting to know whether the preceding argument can be
extended to other kernels and to non-Hilbertian spaces. But this is not our
aim here. Let us just observe that in this special case P f

r is known to be
cyclically monotone as contained in the subdifferential of the Asplund func-
tion

:rf (w) :=(rf +k)* (w)

(where (rf +k)* is the Fenchel conjugate of (rf +k)) while &fr is
paraconvex (see [2] for instance):

fr(w)=r&1k(w)&r&1:rf (w).

Throughout we suppose f is l.s.c. non-improper (i.e., assumes at least one
finite value) and that its regularized function fr takes a finite value at some
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given point w of X. This assumption is fulfilled for w=0 when f satisfies the
growth condition (which is in fact a non-decay condition)

there exist a>0, b # R+ such that f (x)�b&ak(x) for each x # X, (G)

and we take r # (0, a&1). Such a condition is obviously satisfied for any
r>0 when f is an indicator function.

Furthermore, under a mild condition on h, the function fr takes only
finite values. Thus, in the sequel we assume h satisfies the hypothesis

For any c # (0, 1), d # R+ there exists m # R+ such that
(H)

h(t)�ch(t+d )&m \t # R+ .

This condition is satisfied when h(t)=hp(t)=(1�p) t p. Appropriate modifi-
cations of what follows (taking restrictions on balls) would enable one to
replace (H) by the following weaker assumption:

For any d # R+ there exist c # (0, 1) and m # R+ such that
(H0)

h(t)�ch(t+d )&m \t # R+ .

This condition is satisfied by the function he given by he(t)=exp t&1.
It can be shown that any function f satisfying the growth condition (G)

is such that fr(w)>&� for each w # X whenever r # (0, a&1). In fact we
will establish a more precise result in Lemma 1.3 below.

It will be convenient to introduce the following terminology. A function
f : X � R _ [�] is said to be finitely minimizable if there exists r�0 such
that for each t>mf :=inf f (X ) one has

rBX & [ f �t]{<,

where [ f �m]=[x # X : f (x)�m] and BX is the closed unit ball of X.
The infimum of such r's is called in [29] the radius of essential minimiza-
tion of f and is denoted by \( f ). It is shown in [29] that

\( f )=inf [rad(xn) : (xn) # M( f )],

where M( f ) denotes the set of minimizing sequences of f and
rad(xn)=lim infn &xn&. A minimizing sequence (xn) such that (&xn&) �
\( f ) will be called an essential minimizing sequence.

It is easy to show that any coercive function is finitely minimizable.

Lemma 1.2. Suppose that f is coercive (i.e. lim&x& � � f (x)=�) or, more
generally, semicoercive (i.e. f (�) :=lim inf&x& � � f (x)>inf f (X )=: mf).
Then f is finitely minimizable.
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Proof. For any s # (mf , f (�)) there exists r�0 such that f (x)>s for
x # X"rBX , so that for each t>mf , setting s=min(t, 1

2(mf + f (�))) one
gets rBX & [ f �t]#[ f �s]{<. K

The example of X=R, f (x)=x2 exp(&x2) shows that a finitely mini-
mizable function may be non-semicoercive. When the set Sf of minimizers
of f is nonempty one has \( f )�inf [&x& : x # Sf]; it is easy to find exam-
ples showing that this inequality may be strict. When X is reflexive and f
is finitely minimizable and weakly lower semicontinuous (l.s.c.), the set Sf

is nonempty; in that case equality holds.

Lemma 1.3. Suppose f satisfies the growth condition (G). Then for each
w # X and for each r # (0, a&1) the function fr, w given by

fr, w( y) := f (w& y)+r&1k( y)

is coercive, hence finitely minimizable and fr(w) is finite.

Proof. Let w # X, d�&w&, r # (0, a&1), x=w& y. Then, taking
c # (ar, 1), we have for some m # R

fr, w( y)�b&ah(&x&)+r&1h(&x&&d )

�b&ah(&x&)+r&1ch(&x&)&mr&1

�b&r&1m+r&1(c&ar) h(&x&)

by assumption (H). Since h(&w& y&) � � as &y& � �, fr, w is coercive. K

The preceding proof shows that for each d # R+ the function fr is
bounded below on the ball dBX . It also shows that given d # R+ there
exists d $ # R+ such that for each w # dBX

fr(w)=inf [ f (x)+r&1h(&w&x&) : x # d $BX]

so that fr is Lipschitzian on dBX (see also [13]). Then, if the space X has
a Fre� chet differentiable norm (resp. is an Asplund space and f is convex)
fr is densely (resp. generically) Fre� chet subdifferentiable [33]. Let us recall
basic facts about this notion and related properties.

Given f : X � R _ [�] finite at w # X, the firm (or Fre� chet) subdifferen-
tial of f at w is the set �&f (w) of w* # X* such that for each =>0 there
exists $>0 such that

f (x)� f (w)+(w*, x&w) &= &x&w&
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for x # B(w, $). This set is contained in the contingent (or Hadamard ) sub-
differential �f (w) of f at w which is the set of w* # X* such that (w*, u) �
f $(w, u) for each u # X, where

f $(w, u) := lim inf
(t, v) � (0+, u)

t&1( f (w+tv)& f (w))

is the lower (or contingent) derivative of f at w. Both �&f (w) and �f (w) are
reduced to the singleton [ f $(w)] when f is Fre� chet differentiable at w.
Moreover, when f is convex, they coincide with the subdifferential of con-
vex analysis.

Let us present an elementary estimate on the elements of �f (w) which we
will use later. To this aim, recall that f : X � Rv is said to be calm at x0 if
it is finite at x0 and if there exist r>0, c�0 such that for x # B(x0 , r) one
has

f (x)� f (x0)&c &x&x0 &,

or, equivalently, if lim infx � ({) x0
&x&x0&&1 ( f (x)& f (x0))>&�. The

function f is said to be quiet at x0 if & f is calm at x0 . The infimum of the
family of constants c as above (i.e., &lim infx � x0

&x&x0&&1 ( f (x)& f (x0))
is called the constant of calmness of f at x0 ; the constant of quietness of f
at x0 is the constant of calmness of & f at x0 .

Lemma 1.4. Suppose f is quiet at x0 with constant of quietness c. Then
for any x0* # �f (x0) one has &x0*&�c.

Proof. This follows immediately from the inequalities

(x0*, u) � f $(x0 , u)�c &u& \u # X. K

The following lemma could be given in the general framework of perfor-
mance functions but we prefer to keep close to the specific case we study.

Lemma 1.5. Suppose the function fr, w given by fr, w( y) := f (w& y)+
r&1k( y) is finitely minimizable. Then fr is quiet at w and its rate of quietness
is majorized by r&1h$(\), where \=\( fr, w) is the radius of essential mini-
mization of fr, w . In particular, for any w* # �fr(w) one has &w*&�r&1h$(\).

Proof. Let ( yn) be a minimizing sequence of fr, w such that (&yn&) � \
(such a sequence does exist). Then, for some sequence (=n) of R+ with limit
0 one has for any v # X

fr(w)�f (w& yn)+r&1k( yn)&=n ,

fr(w+v)�f (w& yn)+r&1k(v+ yn),
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so that, h being of class C1 around \ and nondecreasing

lim sup
&v& � 0+

1
&v&

( fr(w+v)& fr(w))

�r&1 lim sup
&v& � 0+

1
&v&

(h(&yn &+&v&)&h(&yn&))

�r&1h$(\).

The last assertion then follows from Lemma 1.4. K

For elements of the Fre� chet subdifferential one can be more precise.

Lemma 1.6. For any w* # �&fr(w) (in particular for any w* # �fr(w)
when fr is convex) with \ :=\( fr, w)>0 one has &w*&=r&1h$(\).

Proof. The proof is inspired by the corresponding one with the distance
function in [11]: when one takes for f an indicator function the result
reduces to [11] Theorem 11. Let ( yn) be a minimizing sequence of fr, w

such that (&yn&) � \( fr, w). We may suppose yn {0 for each n, otherwise
w # P f

r(w) and \=0. Let (tn) � 0+ be such that

f (w& yn)+r&1k( yn)� fr(w)+t2
n .

Since for each n we have

fr(w&tn yn)� f (w& yn)+r&1k( yn&tn yn)

and since for each bounded subset M of X (in particular for M=
[&yn : n # N]) we have

lim inf
t � 0+

inf
z # M

t&1( fr(w+tz)& fr(w)&(w*, tz) )�0

we get

lim inf
n

t&1
n (r&1h((1&tn) &yn &)&r&1h(&yn&)&(w*, &tn yn) )�0

hence

lim inf
n �w*,

yn

&yn&��r&1h$(\). (1)

As &w*&�r&1h$(\) by the preceding lemma, we can conclude that
&w*&=r&1h$(\). K
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2. CONSEQUENCES OF EXACT PROXIMATION

In this section we suppose the proximal regularized function fr is exact
at w for some r>0, w # X, i.e., that the set

P(w) :=P f
r(w) :=[x # X : f (x)+r&1k(w&x)= fr(w)]

is nonempty and we draw some easy consequences pertaining to the subdif-
ferentials and the super-differentials of f and fr .

This exactness property is satisfied when X is a dual space and fr, w is
weak* lower semicontinuous (l.s.c.) and finitely minimizable, in particular
when X is reflexive and f satisfies the growth condition (G) and is
quasiconvex (the sum of two l.s.c. functions being l.s.c.).

Our first observation is an easy generalization to the nonconvex case of
a well-known result of convex analysis (see [22] for instance). It could be
deduced from general results about performance functions. Here, given
proper functions f, g : X � R _ [�] we set

( f g g)(w) :=inf[ f (x)+ g(w&x) : x # X ]

P(w) :=Pf, g(w) :=[x # X : f (x)+ g(w&x)=( f g g)(w)].

In the sequel we will take g=r&1k fixed and we will use the following easy
lemma.

Lemma 2.1. Suppose f g g is finite at w and P(w) is nonempty. Then

�( f g g)(w)/ ,
x # P(w)

�f (x) & �g(w&x),

�&( f g g)(w)/ ,
x # P(w)

�&f (x) & �&g(w&x).

Proof. Let us prove the first inclusion, the proof of the second one
being similar (see also [17, Lemma 3.6]). In view of the symmetry of the
roles of f and g it suffices to show that any w* # �( f g g)(w) belongs to
�g(w&x). By definition, for each u # X there exists a function = : R+_X �
R+ _ [�] such that lim(t, v) � (0+, u) =(t, v)=0 such that for any t # R+ ,
v # X

(w*, tv) �( f g g)(w+tv)&( f g g)(w)+=(t, v) t.

Using the relations

( f g g)(w+tv)�f (x)+ g(w+tv&x)

( f g g)(w)=f (x)+ g(w&x)
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we get

(w*, tv)�g(w&x+tv)& g(w&x)+=(t, v) t,

so that w* # �g(w&x). K

Taking g=r&1k we get the following consequence about regularized
functions.

Proposition 2.2. Suppose that for some r # (0, a&1) and some w # X the
set P f

r(w) is nonempty. Then, for each x # P f
r(w), one has

�fr(w)/r&1 �k(w&x) & �f (x).

In particular, if the norm j=& }& is Gâteaux-differentiable at w&x and if fr

is Hadamard-subdifferentiable at w then

�fr(w)=r&1h$(&w&x&) S(w&x),

where, for u # X, S(u) :=�j(u)=[u* # SX* : (u*, u)=&u&]. If \ is the
radius of essential minimization of the function fr, w and if there exists some
x # P f

r(w) with &x&w&=\ (in particular if X is reflexive and if f is weakly
l.s.c.) then for any w* # �fr(w) one has &w*&=r&1h$(\).

When X is infinite dimensional and f is not an indicator function it may
happen that P f

r(w) is nonempty but that P f
r(w) & B(w, \)=<.

Example. Let (xn) be a sequence without cluster point of the unit
sphere SX of X and let f be given by f (xn)=rn , with (rn) � 0+ , f (x)=&1
for x # 2SX and f (x)=� otherwise. Then for w=0, r=1, h(t)=t we have
\=1, P f

r(w)=2SX hence P f
r(w) & B(w, \)=<.

Taking for f an indicator function and setting r=1, h(t)=t, we get a
simple consequence which generalizes results of [8, 21, 36].

Corollary 2.3. Let C be a nonempty closed subset of X and let
w # X"C be such that PC(w) and �dC(w) are nonempty. Let N(C, x) be the
normal cone to C at x. Then, for each x # PC(w) one has

�dC(w)/S(w&x) & N(C, x)/SX* .

Corollary 2.4. Let C be a nonempty closed subset of a strictly convex
Banach space X. Then, for each w # W"C such that dC is H-subdifferentiable,
the set PC(w) is at most a singleton.
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Proof. This follows from the fact u=v whenever S(u) & S(v){< when
X is strictly convex. K

This uniqueness result can be extended to proximal multimappings.

Corollary 2.5. Suppose that for some r # (0, a&1) and some w # X the
function fr is a Hadamard subdifferentiable at w. Suppose h$ is positive and
increasing on (0, �) and the norm is strictly convex. Then the set P f

r(w) is
at most a singleton.

Proof. Given w* # �fr(w), for each x # P f
r(w) we must have

w* # r&1 �k(w&x).

Then, if x{w one has �k(w&x)=h$(&w&x&) S(w&x), so that the
preceding inclusion yields

rw* # h$(&w&x&) S(w&x),

hence r &w*&=h$(&w&x&), a relation which determines t :=&w&x&. Then
one cannot have w # P f

r(w) which would imply rw* # h$(0) BX* , r &w*&�
h$(0)<h$(t). Since S(w&x)=h$(\)&1 rw*, and since S is injective on
spheres centered at 0, as easily checked, the determination of x is
complete. K

Now let us turn to superdifferentials. We recall that the Hadamard
superdifferential of f at x is the set

�2 f (x)=&�(&f )(x);

a similar notation can be used for the Fre� chet superdifferential �2 &f (x).

Lemma 2.6. Given w # X such that f g g is finite and exact at w, given
x # P f

r(w), for any z* # �2 g(w&x) (resp. z* # �2 &g(w&x)) one has

z* # �2 ( f g g)(w) (resp. z* # �2 &( f g g)(w)).

Proof. This time we just prove the Fre� chet case. Then, for z* # �2 &g(w&x)
we can find a modulus =( } ), i.e., a function =( } ) satisfying limt � 0 =(t)=0,
such that

g(w+u&x)& g(w&x)�(z*, u)+=(&u&) &u&.
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Then, as ( f g g)(w)= f (x)+ g(w&x) we get

( f g g)(w+u)&( f g g)(w)

�( f (x)+ g(w+u&x))&( f (x)+ g(w&x))

�(z*, u) +=(&u&) &u&. K

Applying this lemma to our regularization process we get the following
result.

Proposition 2.7. Suppose for some r # (0, a&1) and some w # X the set
P f

r(w) is nonempty. Let x # P f
r(w) be such that k=h b j is H-differentiable

(resp. F-differentiable) at w&x. Then

r&1k$(w&x) # �2 fr(w) (resp. r&1k$(w&x) # �2 &fr(w)).

In particular, if j is G-differentiable (resp. F-differentiable) at w&x then

r&1h$( j(w&x)) S(w&x) # �2 fr(w) (resp. �2 &fr(w)).

Corollary 2.8. Suppose with the assumptions of the preceding proposi-
tion that fr is H-subdifferentiable (resp. F-subdifferentiable) at w (this is the
case when fr is convex). Then fr is H-differentiable (resp. F-differentiable) at
w and

f $r(w)=r&1k$(w&x).

Proof. This follows from the fact that if w* # �2 fr(w) and if z* # �fr(w)
then w*=z* and fr is H-differentiable at w. K

Let us show now that a continuity assumption on the proximal multi-
mapping P f

r entails a strong differentiability property of the regularized
functions. Let us recall that a function f is said to be strictly differentiable
at x if it is Fre� chet differentiable at x and if

&u&v&&1 ( f (u)& f (v)& f $(x)(u&v)) � 0

as u, v � x, u{v. This condition is satisfied if f is continuously differen-
tiable at x, i.e., when f is differentiable on a neighborhood of x and its
derivative f $ is continuous at x.

We will also need the notion of lower semicontinuity (l.s.c.) of a multi-
mapping M : W �� X between two topological spaces W, X: M is said to be
l.s.c. at (w, x) # M when for each neighborhood V of x there exists a
neighborhood U of w such that M(u) & V{< for each u # U. When X is
metrizable this condition amounts to d(x, M(u)) � 0 as u � w.
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Lemma 2* .9. Suppose the multimapping P :=Pf, g is l.s.c. at (w, x) and g
is strictly differentiable at w&x. Then f g g is strictly differentiable at w
and

( f g g)$ (w)= g$(w&x).

Proof. By assumption, we can find a neighborhood V of w in X and a
mapping v [ xv from V to X such that xv # P(v) for v # V and xv � x as
v � w.

Substituting v to w and xv to x in the estimates of Lemma 2.6 we obtain,
as g is strictly differentiable at w&x and xv � x as v � w

( f g g)(v+u)&( f g g)(v)�g(v+u&xv)& g(v&xv)

�g$(w&x)(u)+=(v, u) &u&

with =(v, u) � 0 as v � w, u � 0. Setting u$=&u, v$=v+u we get an
inequality in the opposite direction, and we have shown strict differen-
tiability of f g g at w. K

Corollary 2.10. Suppose the norm j is Fre� chet differentiable on X0=
X"[0] and for some r # (0, a&1), w # W, x # P f

r(w) the multimapping P f
r is

l.s.c. at (w, x). Then the regularized function fr is strictly differentiable at w
and

f $r(w)=r&1h$(&w&x&) S(w&x).

The lower semicontinuity assumption (which can be dropped when fr is
convex) is stringent, especially in the nonconvex case, but it is satisfied in
a number of cases.

Examples. (a) Let f =iC , where C=X"U, U being the open unit ball
of the Hilbert space X. Then PC :=P f

r is not l.s.c. at 0 but it is l.s.c. at
(w, PC(w)) for each w # X"[0].

(b) Let X=R2, f =iC where C=R2"P2, with P=(0, �). Then P f
r is

l.s.c. at each point X"2+ where 2+=[(r, r) : r # P].

(c) When X is an uniformly convex Banach space, it can be shown
that the projection mapping on convex subsets is uniformly continuous on
bounded subsets (see [30]) so that the lower semicontinuity assumption is
satisfied.

(d) This assumption is also satisfied if X is a strictly convex reflexive
Kadec space and f is convex.

(e) When X is a Hilbert space and f is convex, P f
r is nonexpansive

[26].
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3. EXISTENCE OF PROXIMAL POINTS

In this section we examine the consequences of subdifferentiability of the
regularized function fr . We have seen in the preceding section that super-
differentiability of fr is for free when the norm j is assumed to be differen-
tiable and P f

r(w) is nonempty. On the contrary, subdifferentiability of fr is
a stringent assumption. We note however that this assumption is satisfied
at a dense set of points when fr is convex and X is an Asplund space or
when fr is l.s.c. and X has a Lipschitzian differentiable bump function.

In the sequel we denote by WP the set of well-posed linear forms on X,
in other words, the set of x* # X* which firmly (or strongly) exposes BX ,
i.e., such that each maximizing sequence of x* in BX converges. It follows
from the general theory of well-posed optimization problems that any
x* # WP attains its maximum on BX at a unique point. We also denote by
GWP the set of generalized well-posed linear forms on X, i.e., the set of
x* # X* such that any maximizing sequence (xn) of x* in the unit ball BX

has a converging subsequence. Then

S
*

(x*) :=S*(x*) & X :=[x # SX : (x*, x) =&x*&]

is nonempty, SX being the unit sphere of X, S* being the subdifferential of
the dual norm. The following definition will be convenient.

Definition 3.1. The Banach space X (or rather (X, & }&) will be said to
be metrically reflexive (in short M-reflexive) if X*=GWP _ [0].

This property obviously bears on the metric structure of X; by the
theorem of James, it implies that X is reflexive. On the other hand, the
theorem of Trojanski ensures that any reflexive Banach space can be
renormed into an M-reflexive space. In fact, any Banach space whose dual
norm is Fre� chet differentiable off 0 is M-reflexive in view of the S8 mulyan
Theorem [19, Theorem 1.4(ii), p. 3]. In particular, if X is reflexive and has
the Kadec�Klee property (i.e., weak convergence and norm convergence
coincide in the unit sphere) then X is M-reflexive. If moreover X is strictly
convex then WP _ [0]=X*. The class of M-reflexive spaces is stable
under quotients (with the quotient norms) and products (with the sup
norm).

Without any assumption on X one can assert that x* # WP, hence
x* # GWP, whenever the dual norm on X* is Fre� chet differentiable at
x* [19]. Moreover, it is known [32, 35] that for any Banach space X
verifying the Radon�Nikodym property the sets GWP and WP are generic
subsets of X* (i.e., dense G$ subsets of X*).

215PROXIMAL MAPPINGS



File: DISTL2 320114 . By:AK . Date:02:07:98 . Time:13:17 LOP8M. V8.B. Page 01:01
Codes: 2715 Signs: 1414 . Length: 45 pic 0 pts, 190 mm

Theorem 3.1. Suppose f is l.s.c. and fr(w) is finite for some r>0 and
some w # X. Suppose w* # �fr(w) & GWP, &w*&=r&1h$(\) where \ is the
radius of essential minimization of fr, w and there exists z # S

*
(w*) at which

the norm j of X is Fre� chet differentiable. Then P f
r(w) is nonempty. Moreover,

it contains some point x such that &x&w&=\ and any essential minimizing
sequence of fr, w has a limit point in P f

r(w). If moreover w* # WP, in par-
ticular if X is strictly convex, then any essential minimizing sequence of fr, w

converges to the unique element of P f
r(w).

Proof. When \=0 we have w # P f
r(w), the function fr, w being l.s.c. Thus

we suppose \>0.
Let z # S

*
(w*) and let (zn) � z, (tn) � 0+ be such that the contingent

derivative f $r(w, z) is given by

f $r(w, z)=lim t&1
n ( fr(w+tnzn)& fr(w)),

and let yn # X be such that (&yn&) � \, f (w& yn)+r&1k( yn)� fr(w)+t2
n .

Then,

fr(w+tnzn)& fr(w)

� f (w& yn)+r&1k( yn+tn zn)&( f (w& yn)+r&1k( yn)&t2
n)

�r&1(h(&yn+tn zn&)&h(&yn&))+t2
n

and the definitions give

&w*&=(w*, z)� f $r(w, z)

�lim inf
n

t&1
n r&1(h(&yn+tn zn&)&h(&yn&)).

The Lebourg Mean Value Theorem and the chain rule for Clarke's
subdifferentials of locally Lipschitzian functions [15, Theorems 2.3.7 and
2.3.9] yields some sn # [0, tn] and some

wn* # r&1�k( yn+snzn)/r&1h$(&yn+snzn&) S( yn+snzn),

where S(x) :=�j(x), such that

k( yn+tnzn)&k( yn)=(rw*n , tnzn)

for each n # N. It follows that

&w*&�lim inf (wn* , zn) =lim inf (wn*, z)

�lim sup &wn*&=lim sup r&1h$(&yn+snzn &)=r&1h$(\).
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Since j is Fre� chet differentiable at z, the S8 mulyan Theorem ensures that z
strongly exposes &w*& BX* at w* and (wn*) converges to w*.

Now, setting \n :=&yn &, un :=\&1
n yn , we have by our assumptions

r&1h$(\)=&w*&�(w*, un)

�(wn*, un)&&w*&wn*&.

Since (wn*) � w* and since wn* # r&1h$(&yn+snzn &) S(un+\&1
n snzn) we get

that

r&1h$(\)�lim sup (wn*, un)�lim inf (wn* , un)

=lim inf (wn*, un+\&1
n snzn)�lim r&1h$(&yn+tnzn &),

hence ((w*, un) ) � r&1h$(\). As w* is generalized well-posed on BX we get
that (un) has a converging subsequence. It follows that xn :=w&\nun con-
verges to x :=w&\u where u=lim un ; as f is l.s.c. we get x # P f

r(w). When
w* # WP the whole sequence (un) converges. K

We observe that the S8 mulyan Theorem ensures that the assumption on
w* is satisfied whenever w* # �fr(w) & J(F ) & F*, where J=�1

2 j2, F (resp.
F*) denoting the set of points at which the norm j (resp. the dual norm)
is Fre� chet differentiable.

Corollary 3.2. Suppose fr(w) is finite for some r>0 and some w # X.
Suppose �fr(w) contains an element with norm r&1h$(\) and the norms of X
and X* are Fre� chet differentiable off 0. Then P f

r(w) is nonempty.

Using the observations preceding the theorem we get the following con-
sequence.

Corollary 3.3. Suppose f is l.s.c. and satisfies the growth condition
(G). Let r # (0, a&1), w # X. Suppose X is M-reflexive and the norm of X is
Fre� chet differentiable off 0. If �fr(w) contains a non-zero element with norm
r&1h$(\) then P f

r(w) is nonempty.

Taking h=IR , r=1, f =iC for a nonempty closed subset C of X we get
an existence result for best approximation which extends a result in [21]
in which dC is assumed to be Gâteaux differentiable at w, the norm of X
is supposed to be uniformly differentiable, and the norm of X* is Fre� chet
differentiable.

Corollary 3.4. Let C be a nonempty closed subset of a Banach space
X and let w # X"C. Suppose w* # �dC(w) & GWP & SX* for some w # X"C
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and there exists some z # S
*

(w*) at which the norm of X is Fre� chet differen-
tiable. Then w has a best approximation in C.

When one takes an element in the Fre� chet subdifferential instead of the
contingent subdifferential of fr one can drop the assumptions that
&w*&=r&1h$(\) and that the norm of X is Fre� chet differentiable at some
z # S

*
(w*).

Theorem 3.5. Suppose f is l.s.c. and satisfies the growth condition (G).
Let r # (0, a&1). If for some w # X the set �&fr(w) & GWP is nonempty then
P f

r(w) is nonempty. In particular, when X is M-reflexive and h$ is positive on
(0, �), the set P f

r(w) is nonempty whenever fr is Fre� chet subdifferentiable at w.

Of course, the conclusion is valid when X is reflexive and satisfies the
Kadec�Klee property and f is weakly l.s.c., but here we do not make this
stringent assumption.

Proof. Again we may suppose the radius of essential minimization \ of
fr, w is positive. Let ( yn) be an essential minimizing sequence. The proof of
Lemma 1.6 shows that the sequence (un) :=(&yn&&1 yn) is a maximizing
sequence of w* in BX . From the fact that w* is in GWP we get that (un)
has a converging subsequence. As (&yn&) � \, the sequence ( yn) has a con-
verging subsequence and if y is the limit of such a sequence, y is a mini-
mizer of fr, w as fr, w is l.s.c. Then x :=w& y # P f

r(w). Moreover we have
&y&=\, an observation which we will use later.

When X is M-reflexive we have GWP _ [0]=X*. Thus it remains to
observe that if w*=0 we must have \=0 by inequality (1) above and
the positivity of h$ on P. Then w # P f

r(w) by the lower semicontinuity of f
and k. K

Taking for f the indicator function of a closed subset we get an extension
of results of [21, 27] in which differentiability was assumed and a result in
[11] in which X is supposed to be reflexive with the Kadec�Klee property.
It has been pointed out by an anonymous referee that when the dual norm
is Fre� chet differentiable off 0 then X must be Kadec by [12, Theorem 6.6].

Corollary 3.6. Let C be a nonempty closed subset of X. Suppose that
for some w # X"C and some w* # �&dC(w) one has w* # GWP _ [0] (in par-
ticular suppose the dual norm is Fre� chet differentiable at w*). Then w has a
best approximation in C.

Corollary 3.7. Suppose X is M-reflexive, the norm of X is Fre� chet dif-
ferentiable off 0, and h$ is positive on (0, �). Then, for each element w of a
dense subset D of X, the set P f

r(w) is nonempty.
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Proof. It is a consequence of Theorem 3.5 and of the Theorem of Preiss
[33]: the function fr being locally Lipschitzian is densely Fre� chet subdif-
ferentiable. K

Finally let us deal with the stabilized (or limiting) subdifferential

�� &fr(w) :=lim sup
v � w

�&fr(v)

of the function fr , lim sup denoting the limit superior for the strong topol-
ogy.

Proposition 3.8. Suppose f is l.s.c. and satisfies the growth condition
(G), X is M-reflexive, and h$ is positive on (0, �). Let r # (0, a&1). Suppose
the radius \( fr, v) of essential minimization of fr, v is continuous at w # X as
a function of v. Then for each non-zero w* # �� &fr(w) there exists some
x # P f

r(w) such that

w* # r&1h$(\( fr, w)) S(w&x).

In particular the set P f
r(w) is nonempty.

We observe that the continuity assumption on the radius of essential
minimization is satisfied in the case of an indicator function since the dis-
tance function is Lipschitzian.

Proof. Let w* # �� &fr(w)"[0]: there exists sequences (wn) � w,
(wn*) � w* such that w*n {0, wn* # �&fr(wn) for each n, hence wn* #
�&fr(wn) & GWP. The proof of Theorem 3.5 shows that there exists
xn # P f

r(wn) such that &yn&=\n for yn :=wn&xn , \n :=\( fr, wn
) and rw*n #

h$(\n) S( yn). Since (\n) � \ :=\( fr, w) and since h$ is continuous, we see
that ( yn*) :=(rh$(\n)&1 wn*) � y* :=rh$(\)&1 w*. Then, setting un :=
&yn&&1 yn we observe that (un) is a maximizing sequence of y* on the unit
ball as

( y*, un)&&y*&=( y*& yn*, un) +&yn*&&&y*& � 0.

Thus (a subsequence of) (un) converges and ( yn) converges too. Then
(xn)=(wn& yn) converges to some x with x # P f

r(w), &w&x&=\. Passing
to the limit in the inclusion of Proposition 2.2 we get the announced
formula. K
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